Categories
Math Reference

Pre-calculus Math References

Formulas used in Pre-calculus from Algebra, Geometry, Trigonometry, and more.

Pre-Calculus

Algebra

Arithmetic Operations

a(b+c)=ab+ac\frac{a}{b} + \frac{c}{d}
\frac{a+c}{b} = \frac{a}{b} + \frac{c}{b}\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \centerdot \frac{d}{c} =\frac{ad}{bc}
Arithmetic Operations

Exponents and Radicals

x^m +x^n = x^{m+n}\frac{x^m}{x^n} = x^{m-n}
( x^m ) ^n = x^{mn}x^{-n} = \frac{1}{x^n}
x^{\frac{1}{n}} = ^n \sqrt{x}x^{\frac{m}{n}} = ^n \sqrt{x^m} = ( ^n \sqrt{x} ) ^m
^n \sqrt{xy} = ^n \sqrt{x} ^n \sqrt{y}^n \sqrt{\frac{x}{y}} = \frac{ ^n \sqrt{x}}{ ^n \sqrt{y}}
Exponents and Radicals

Factoring Special Polynomials

x^2 - y^2 = ( x + y ) ( x - y )x^3 + y^3 = ( x + y ) ( x^2 - xy + y^2 )
x^3 - y^3 = ( x - y ) ( x^2 + xy + y^2 )
Factoring Special Polynomials

Binomial Theorem

( x + y ) ^2 = x^2 + 2xy + y^2( x - y ) ^2 = x^2 - 2xy + y^2
( x +y ) ^3 = x^3 + 3x^2 y + 3xy^2 + y^3( x - y ) ^3 = x^3 - 3x^2 y + 3xy^2 - y^3
( x +y ) ^n = x^n + nx^{n-1} y + \frac{n(n-1)}{2} x^{n-2}                         y^2 +\cdots + \binom{n}{k} x^{n-k} y^k + \cdots + nxy^{n-1} + y^n where \binom{n}{k} = \frac{n(n-1) \cdots (n-k-1)}{k!}

Quadratic Formula

If ax^2 + bx + c=0, then x=\frac{-b \pm \sqrt{b^2 -4ac}}{2a}

Inequalities and Absolute Values

If a < b and b < c, the a < c.If a < b, then a+c < b+c.
If a < b and c > 0, then ca < cb.If a < b and c < 0, then ca > cb.
If a > 0, then|x|=a means x=a or x=-a
|x| < a means -a < x < a
|x| > a means x > a or x < -a
Inequalities and Absolute Values

Geometry

Geometric Formulas

Formulas for area A, circumference C, and volume V
TriangleA = \frac{1}{2} b h = \frac{1}{2} a b sin \theta where \theta is the angle made by a and b. Also, b is the base of the triangle and h is the height of the triangle.
CircleA = \pi r^2
C = 2 \pi r
Sector of CircleA = \frac{1}{2} r^2 \theta
s = r \theta
(\theta in radians)
SphereV = \frac{4}{3} \pi r^3
A = 4 \pi r^2
CylinderV = \pi r^2 h
ConeV = \frac{1}{3} \pi r^2 h
A = \pi r \sqrt{r^2 + h^2}
Formulas for area A, circumference C, and volume V

Distance and Midpoint Formulas

Distance between points (x1,y1) and (x2,y2):d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
Midpoint between points (x1,y1) and (x2,y2):(\frac{x_1 + x_2}{2},\frac{y_1 + y_2}{2} )
Distance and Midpoint Formulas

Properties of Lines

Slope of a line through points (x1,y1) and (x2,y2):m = \frac{y_2 - y_1}{x_2 - x_1}
Point-slope equation of a line through point (x1,y1) with slope m:y - y_1 = m(x - x_1)
Slope-intercept equation of a line with slope m and y-intercept b:y = mx + b
Properties of Lines

Circle Equation

The equation of a circle with center at (h,k) and radius r:(x-h)^2 + (y - k)^2 = r^2
Circle Equation

Trigonometry

Angle Measurement

\pi radians = 180^o

Right Angle Trigonometry

sin(\theta) = \frac{opp}{hyp}csc(\theta) = \frac{hyp}{opp}
cos(\theta) = \frac{adj}{hyp}sec(\theta) = \frac{hyp}{adj}
tan(\theta) = \frac{opp}{adj}cot(\theta) = \frac{adj}{opp}
Right Angle Trigonometry

A nice thing to think of is SohCahToa. S(in)o(pp)h(yp)C(osine)a(dj)h(yp)T(angent)o(opp)a(adj)

Fundamental Identities

csc(\theta) = \frac{1}{sin(\theta)}sec(\theta) = \frac{1}{cos(\theta)}
tan(\theta) = \frac{sin(\theta)}{cos(\theta)}cot(\theta) = \frac{cos(\theta)}{sin(\theta)}
cot(\theta) = \frac{1}{tan(\theta)}sin^2 (\theta) + cos^2 (\theta) = 1
1 + tan^2 (\theta) = sec^2 (\theta)1 + cot^2 (\theta) = csc^2 (\theta)
sin(- \theta) = - sin(\theta)cos(- \theta) = cos(\theta)
tan(- \theta) = - tan(\theta)sin(\frac{\pi}{2} - \theta) = cos(\theta)
cos(\frac{\pi}{2} - \theta) = sin(\theta)tan(\frac{\pi}{2} - \theta) = cot(\theta)
Fundamental Identities

The Law of Sines

For a triangle where a is the side opposite of angle A, b is the side opposite of angle B, and c is the side opposite of angle C:
\frac{sin A}{a} = \frac{sin B}{b} = \frac{sin C}{c}
The Law of Sines

The Law of Cosines

For a triangle where a is the side opposite of angle A, b is the side opposite of angle B, and c is the side opposite of angle C:
a^2 = b^2 + c^2 -2bc cos(A)
b^2 = a^2 + c^2 -2ac cos(B)
c^2 = a^2 + b^2 -2ab cos(C)
The Law of Cosines

Addition and Subtraction Formulas

sin(x+y) = sin(x)cos(y) + cos(x)sin(y)
sin(x-y) = sin(x)cos(y) - cos(x)sin(y)
cos(x+y) = cos(x)cos(y) - sin(x)sin(y)
cos(x-y) = cos(x)cos(y) + sin(x)sin(y)
tan(x+y) = \frac{tan(x) + tan(y)}{1 - tan(x)tan(y)}
tan(x-y) = \frac{tan(x) - tan(y)}{1 + tan(x)tan(y)}
Addition and Subtraction Formulas

Double-Angle Formulas

sin(2x) = 2 sin(x) cos(x)
cos(2x) = cos ^2 (x) - sin ^2 (x) = 2 cos ^2 (x) - 1 = 1 - 2 sin ^2 (x)
tan(2x) = \frac{2 tan(x)}{1 - tan ^2 (x)}
Double-Angle Formulas

Half-Angle Formulas

sin ^2 (x) = \frac{1 - cos(2x)}{2}cos ^2 (x) = \frac{1 + cos(2x)}{2}
Half-Angle Formulas

Leave a Reply

Your email address will not be published. Required fields are marked *